
www.manaraa.com

Requirements Speci�cation for Process-ControlSystems �yNancy G. LevesonComputer Science and Engineering, FR-35University of WashingtonSeattle, WA 98195Mats P.E. HeimdahlComputer Science Department, A-714 Wells HallMichigan State UniversityEast Lansing, Michigan 48824-1027Holly HildrethJon D. ReeseInformation and Computer Science Dept.University of California, IrvineIrvine, CA 92717
�This work has been partially supported by NSF Grant CCR-9006279, NASA Grant NAG-1-668, andNSF CER Grant DCR-8521398.yThis paper has appeared in IEEE Transactions on Software Engineering, vol. 20, no. 9, pp. 684{107,September 1994. Copyright 1994 by The Institute of Electrical and Electronics Engineering, Inc. All rightsreserved. 1

www.manaraa.com

AbstractThis paper describes an approach to writing requirements speci�cations for process-control systems, a speci�cation language that supports this approach, and an exampleapplication of the approach and the language on an industrial aircraft collision avoid-ance system (TCAS II). The example speci�cation demonstrates (1) the practicalityof writing a formal requirements speci�cation for a complex, process-control systemand (2) the feasibility of building a formal model of a system using a speci�cationlanguage that is readable and reviewable by applications experts who are not com-puter scientists or mathematicians. Some lessons learned in the process of this work,which are applicable both to forward and reverse engineering, are also presented.Index Terms: process control, reactive systems, requirements, blackbox speci�-cations, formal methods, safety analysis, reverse engineering1 IntroductionEmbedded software is part of a larger system and has a primary purpose of providing atleast partial control of the system or process in which it is embedded. Most such softwareis real-time and reactive (i.e., required to interact with and respond to its environmentin a timely fashion during execution). A high cost is associated with determining thecorrectness of such software and a still higher cost associated with its incorrectness. Therequirements for complex, embedded software systems are particularly di�cult to specifyand validate.The very �rst stages of software development have the fewest formal procedures to aidthe analyst, and this is also the time at which the most costly errors are introduced interms of being the last and most di�cult to �nd. Many software requirements validationtechniques involve building prototypes or executable speci�cations or waiting until thesoftware is constructed and then testing the whole system. Although certainly much canbe learned by \testing" a speci�cation through executing it, or a prototype built fromit, the con�dence that the system will have certain properties is limited to the test casesthat were executed. Our approach is to model the required software blackbox behavioralong with the assumptions about the behavior of the other components of the system, andthen to apply formal analysis procedures to the model in order to ensure that the softwarerequirements model satis�es required system functional goals and constraints, includingsafety.Several di�erent safety analysis procedures have been developed by members of theIrvine Safety Research Group [LH83, LS87, LCS91, JLHM91], but they work on diversemodels and have not been validated on real software. Our long-term goal is to develop acoherent, complete, and practical methodology for building safety-critical systems. Thispaper concentrates on the earliest part of the methodology, i.e., requirements speci�cation,2

www.manaraa.com

and demonstrates it on a real system. Future papers will describe the analysis procedureswe are developing and evaluating for our model.Most of the information to be included in our system requirements model already iscollected by system engineers or software engineers. However, the information is commonlyscattered throughout the system documentation, is usually informally speci�ed, and is notin a form amenable to formal analysis. In addition, the information is often speci�ed usingmultiple di�erent and incompatible models within the same speci�cation (e.g., Statemate[HLN+90], Hatley/Pirbhai [HP87], Ward/Mellor [WM85]). For example, Statemate usesStatecharts, Activity Charts, and Structure Charts; Hatley/Pirbhai uses data
ow dia-grams, control
ow diagrams, control speci�cations (�nite state machines), and a processactivation table.Our approach is to build one state-based model that includes all of the informationneeded to describe the black-box behavior of the components of the system (includingbut not only the computer) and the interface between the components and no more. Byhaving all the requirements information in one model, formal analysis of the entire systembecomes feasible and redundancy is reduced. The latter reduces the di�culty of changingthe speci�cation without introducing inconsistency.Furthermore, a blackbox model separates the speci�cation of requirements from design,simplifying the model and making the requirements model easier to construct, review, andformally analyze. Most software requirements speci�cation languages include softwaredesign information; the original A-7 speci�cation [Hen80] is a notable exception. Themodeling language described in this paper di�ers from the A-7 language, however, in theuse of higher-level, global abstractions of the entire system and in the goal of providingformal system analysis procedures to operate on the underlying formal model. Research hasincreased on the development of higher-level abstractions for embedded systems [FBWJ92,vS90]; and although large-scale examples are still lacking, some of these more recent ideasare being applied in retrospect to the A-7 system.Finally, the language de�ned here has analysis goals similar to the ProCoS system[RR91], but uses state machines whereas ProCoS uses process algebras. Consequently, theanalysis procedures applicable to our model are related to ongoing work in automated statespace analysis [Hol91, CES86] while the ProCoS approach relies on traditional methods oftheorem proving to analyze their models. Our approach is also similar to some recent workby Parnas [PW89], which also uses tables and state machines but uses trace semantics foranalysis.The most important result of our research is veri�cation that building a formal require-ments model for a complex process control system is possible and that such a model can bereadable and reviewable by non-computer scientists. Few examples exist of the applicationof formal methods to a complex, reactive system requirements speci�cation. In order toevaluate our safety analysis ideas, we needed to build a model of a realistic system to useas a test bed. This paper describes the resulting formal system modeling method and3

www.manaraa.com

its use to specify the system requirements of an aircraft collision avoidance system calledTCAS II. In the midst of this e�ort, our model was adopted as the o�cial requirementsspeci�cation for TCAS II, so the research e�ort and the resulting model had to be indus-trial quality. The unique part of this e�ort, at least in terms of university research, is thatthe speci�cation language was developed with continual feedback and evaluation by FAAemployees, airframe manufacturers, TCAS manufacturers, airline representatives, pilots,and other external reviewers. Most of the reviewers were not software engineers or evencomputer scientists; this helped in producing a speci�cation language that is easily learnedand used by application experts.Although we describe a particular language that we used for this model, the detailsof the actual language features are less important than the other results of the research:(1) the general criteria that any such modeling method and language must satisfy, (2) thetype of information that must be included in such a system requirements model in orderfor it to be analyzable for safety, and (3) the required features of such a language in orderto make it possible to model real systems and to be usable by application experts. Allof these are described in this paper. Future papers will describe the actual application ofsafety analysis techniques to the model.Our results have both forward engineering and reverse engineering implications. Adetailed design speci�cation written in low-level pseudocode (about 300 pages long) alreadyexisted for most of our application. Other parts, however, had only an English languagedescription. Some of the lessons learned about reverse engineering are described in thispaper.The next section brie
y describes the application, a collision avoidance system calledTCAS II. This is followed by an overview of the speci�cation approach and descriptions ofboth the language and the system requirements speci�cation.2 The Tra�c Alert and Collision Avoidance System(TCAS)A real aircraft collision avoidance system (called TCAS II) was used as a testbed to provideimmediate evaluation and feedback for our modeling and analysis ideas. TCAS II hasbeen described by the head of the program at the FAA as the most complex system to beincorporated into the avionics of commercial aircraft. It therefore provides a challengingexperimental application of formal methods to a real system.TCAS is a family of airborne devices that function independently of the ground-basedair tra�c control (ATC) system to provide collision avoidance protection for a broad spec-trum of aircraft types (commercial aircraft and larger commuter and business aircraft).TCAS I provides proximity warning (tra�c advisories) to assist the pilot in the visualsighting of intruder aircraft and is intended for use by smaller commuter and general avi-4

www.manaraa.com

ation aircraft. TCAS II provides tra�c advisories and recommended escape maneuvers(resolution advisories) in a vertical direction to avoid con
icting aircraft. TCAS III willadd resolution advisories in a horizontal direction.Development of aircraft collision avoidance systems started over 20 years ago. In 1981,the FAA decided to develop and implement TCAS II, and a Minimal Operational Perfor-mance Standards (MOPS) document was produced using a combination of English andpseudocode. Since its adoption in 1983, the MOPS has been extensively revised six timesto �x errors or improve the speci�cation. In 1989, the FAA required that TCAS II beinstalled on commercial aircraft with more than 30 seats by December 1991 and on com-mercial aircraft with 10 to 30 seats by 1995. The FAA relaxed the �rst deadline to requireinstallation on half the commercial aircraft
eet by 1991 and on the remainder by 1993.The MOPS document contains information that we would classify as system design (inEnglish) and software design (in English and pseudocode). Because of perceived de�cienciesin this document and the di�culty of FAA certi�cation without real system or softwarerequirements, an e�ort was begun in 1990 to provide a requirements document for TCASII. An industry/government committee began to write a fairly standard English languagespeci�cation while we started an experimental formal speci�cation and safety analysis. Ourspeci�cation was subsequently adopted by the committee as the o�cial TCAS requirementsspeci�cation and the other speci�cation e�ort was abandoned.3 Specifying Requirements for Process-Control Sys-tems3.1 Goals, Constraints, and RequirementsA system is a set of components working together to achieve some common purpose orobjective. The requirements speci�cation language being described in this paper was de-signed for process control systems, where the goal is to maintain a particular relationshipor function F over time (t) between the input to the system (Is) and the output from thesystem (Os) in the face of disturbances (D) in the process (see Figure 1). These relation-ships will involve fundamental chemical, thermal, mechanical, aerodynamic or other lawsas embodied within the nature and construction of the system.Besides the basic objective or function implemented by the process, these types ofsystems may also have constraints on their operating conditions. Constraints may beregarded as boundaries that de�ne the range of conditions within which the system mayoperate. Another way of thinking about constraints is that they limit the set of acceptabledesigns with which the objectives may be achieved.Constraints may arise from several sources, including quality considerations, physicallimitations and equipment capacities (e.g., avoiding equipment overload in order to reduce5

www.manaraa.com

maintenance), process characteristics (e.g., limiting process variables to minimize produc-tion of byproducts), and safety (i.e., avoiding hazardous states). In some systems, thefunctional goal is to maintain safety, so safety is part of the overall objective as well aspotentially part of the constraints.As an example, for an airborne collision avoidance system like TCAS, Is can be viewedas all aircraft that
y into the airspace of the TCAS-equipped aircraft and Os as allaircraft that
y out of the airspace of the TCAS aircraft. The goal of the TCAS system isto maintain a minimum separation function between the aircraft. Constraints include suchthings as not interfering with the ground-based air tra�c control (ATC) system, operatingwith an acceptably low level of unwanted alarms (advisories to the pilot), and minimizingthe amount of deviation of the aircraft from their ATC-assigned tracks.Note that the goals of a system are just that, i.e., they may not be entirely achievable.Although the goal of TCAS II is to eliminate near-misses (i.e., aircraft violating minimumseparation standards), this cannot be a requirement since it is not possible to achieve: Itis, however, a legitimate goal. Another way of stating this goal is to minimize the numberof near-misses. The latter, however, is not a measurable goal since its achievement cannotbe determined. Another possibility that theoretically can be evaluated is to reduce near-misses. The amount of reduction that is actually achieved then becomes a criterion forwhether the system can be justi�ed based on cost and possible increased risk with respectto other hazards in the system. The point here is that goals are di�erent from requirementsbecause the goals may not be achievable. The actual required and achieved behavior canbe evaluated with respect to the goals and constraints to determine whether the system,as speci�ed and designed, is acceptable.Early in the development process, tradeo�s between functional goals and constraintsthat are con
icting or not completely achievable must be identi�ed and resolved accordingto the priorities assigned to them. Identifying these con
icts and resolving them is a majortask in both the system and software requirements analysis process. A second task isensuring that the speci�ed (or required) behavior of the process-control system will achievethe goals to an acceptable degree while satisfying the constraints. Semantic analysis of oursystem requirements model can potentially address both of these elements of correctnesssince it includes a model of the behavior of all the components of the system.3.2 Purpose and Content of Requirements Speci�cation forProcess-Control SystemsA typical process-control system can be divided into four types of components: the process,sensors, actuators, and controller (see Figure 1).The behavior of the process is monitored through controlled variables (Vc) and controlledby manipulated variables (Vm). The process can be described by the process function FP ,a mapping from Vm � Is � D � t ! Os � Vc. Unfortunately, it is usually di�cult to6

www.manaraa.com

Controlled VariablesManipulated Variables

Controller

Actuators Sensors

Process

Output Input

System Input System Output

Command Signal

O

C

I

VV

OI

F

F

F

F
S

C

P

A

S S

cm

Disturbances
D

Figure 1: A basic process control modelderive a mathematical model of the process due to the fact that most processes are highlynonlinear (i.e., the process characteristics depend on the level of operation), and, even ata constant operating level, the process characteristics change with time (i.e., the process isnonstationary). Any attempt to provide a mathematical expression describing the processinvolves simplifying assumptions and therefore will be imperfect. Some of the processcharacteristics, however, can be described, and this description can be used to derive andvalidate the control function.Sensors are used to monitor the actual behavior of the process by measuring the con-trolled variables. For example, a thermometer may measure the temperature of a solventin a chemical process or a barometric altimeter may measure altitude of an aircraft abovesea level. The sensor function FS maps Vc � t! I.Actuators are devices designed to manipulate the behavior of the process, e.g. valvescontrolling the
ow of a
uid or a pilot changing the direction and speed of an aircraft.The actuators physically execute commands issued by the controller in order to changethe manipulated variables. The functionality of the actuators is described by the actuatorfunction FA mapping O � t! Vm.The controller is an analog or digital device used to implement the control function.The functional behavior of the controller is described by a control function (FC) mappingI �C � t!O, where C denotes external command signals. The process may change state7

www.manaraa.com

not only through internal conditions and through the manipulated variables, but also bydisturbances (D) that are not subject to adjustment and control by the controller. Thegeneral control problem is to adjust the manipulated variables so as to achieve the systemgoals despite disturbances.This model is an abstraction|responsibility for implementing the control function mayactually be distributed among several components including analog devices, digital com-puters, and humans. Furthermore, the controller may have only partial control over theprocess|state changes in the process may occur due to internal conditions in the pro-cess or because of external disturbances or the actuators may not perform as expected.For example, the pilot in a TCAS system may not follow the resolution advisory (escapemaneuver) issued by the TCAS controller.The purpose of the control-system requirements speci�cation is to de�ne the systemgoals and constraints, the function FC (i.e., the required blackbox behavior of the con-troller), and the assumptions about the other components of the process-control loop that(1) the implementors need to know in order to implement the control function correctlyand (2) the system engineers and analysts need to know in order to validate the modelagainst the system goals and constraints.A blackbox, behavioral speci�cation of the function FC uses only:(1) the current process state inferred from measurements of the controlled variables,(2) past process states that were measured and inferred,(3) past corrective actions output from the controller, and(4) prediction of future states of the controlled processto generate the corrective actions (or current outputs) needed to maintain F .Information about the process state has to be inferred frommeasurements. For example,in TCAS, relative range positions of other aircraft are computed based on round-tripmessage propagation time. Theoretically, the function FC can be de�ned using only thetrue values of the controlled variables or component states (e.g., true aircraft positions).However, at any time, the controller has only measured values of the component states(which may be subject to time lags1 or measurement inaccuracies), and the controllermust use these measured values to infer the true conditions in the process and possiblyto output corrective actions (O) to maintain F . In the TCAS example, sensors includeon-board devices such as altimeters that provide measured altitude (not necessarily truealtitude) and antennas for communicating with other aircraft. The primary TCAS actuatoris the pilot, who may or may not respond to system advisories. Pilot response delays areimportant time lags that must be considered in designing the control function. Time lagsin the actual process may be caused by aircraft performance limitations.1Time lags are delays in the system caused by the reaction time of the sensors, actuators, and theactual process. 8

www.manaraa.com

Implementation

d5

Black-box

specification of

behavior of

controller

Specification of

controller design

based on

functional

decomposition

d1

d4

d d32

Desired

process

control

behavior Figure 2: Semantic distance3.3 An Approach to Writing Requirements for Process-ControlSystemsWe specify the blackbox behavior of the controller (i.e., the function FC to be computedby the controller) using a state machine model. The outputs of the controller are speci�edwith respect to state changes in the model as information is received about the current stateof the controlled process via the controlled variables Vc. In the TCAS example, the controlfunction is speci�ed using a model of the state of all other aircraft within the host aircraft'sairspace, the state of the on-board components of its own aircraft (e.g., altimeters, aircraftdiscretes2, cockpit display), and the state of ground-based radar stations in the vicinity.Information about this state is received from the sensors (e.g., antennas and transponders)and commands are sent to the actuators (e.g., the pilot, antennas, and transponders).The state machine model of the control function FC is iteratively �ne tuned during re-quirements speci�cation development to mimic the current understanding of the real-worldprocess and the required controller behavior. The state machine model is essentially anabstraction of the behavior of the system function F since it models all the relevant aspectsof the components of the process control loop. Errors in the state machine model representmismatches between this model and the desired behavior of the control loop, includingthe process. We de�ne the informal concept of semantic distance as the amount of e�ortrequired to translate from one model to another. We believe that in order to maximize theapplication expert's ability to �nd errors in the requirements speci�cation, the semanticdistance (d1 in Figure 2) between their understanding of the desired process control be-havior (their mental model of the system) and the speci�cation of that behavior must beminimized. This, in turn, implies that the requirements be written entirely in terms of the2Aircraft Discretes are airframe-speci�c characteristics provided as input to TCAS from hardwareswitches. 9

www.manaraa.com

components and state variables of the controlled system. Speci�cally, \private" variablesrelated only to the implementation of the requirements and not part of the applicationexpert's view of the controlled system should not be used.The requirements review process involves validating the relationship between changesin the real-world process and the speci�ed changes and response in the control functionmodel. Therefore, reviewability will be enhanced if the requirements speci�cation explicitlyshows this relationship. Moreover, when the description of the required controller behaviorincludes more than just its blackbox behavior (e.g., includes software design informationand functional decomposition), then the semantic distance (d4) between the process controlbehavior and the speci�ed controller behavior increases, and the relationship between thembecomes more di�cult to validate. TCAS application experts who know very little ornothing about computers or software have been able to read our requirements model ofTCAS and �nd errors in it.In addition, a formal blackbox, behavioral model of the requirements makes possible(1) a mathematical veri�cation of various desired properties such as consistency of thecontrol model with the system goals and constraints, (2) the generation of standard systemengineering and system safety analyses such as fault trees [Mel91] and (3) the applicationof formal correctness and robustness criteria to the speci�cation model [JLHM91].Although we believe that this type of blackbox speci�cation is easier for applicationexperts to review and easier to validate using formal analysis procedures, the semanticdistance (d5) between the requirements and a standard implementation based on functionaldecomposition is increased. To alleviate this problem, the speci�cation step can be dividedinto separate requirements and design speci�cations or special software designs that resultnaturally from this type of blackbox speci�cation may be used. If performance requirementscan be satis�ed, the speci�cation can be implemented directly without an interveningdesign step.Given the error-proneness of the requirements speci�cation step and the few tools avail-able to �nd these errors, the use of pure blackbox speci�cations (as advocated here and byParnas et.al. [Hen80]) appears justi�ed.4 Speci�cation LanguageThe �rst step in designing a speci�cation language or modeling method is to determinegoals and criteria for the language. This section describes general design criteria for sucha requirements speci�cation language and the language actually used to specify TCAS.10

www.manaraa.com

� Black-box� Minimal� Semantically simple� Coherent, consistent, and concise� Unambiguous underlying language with a formal foundation for analysis� Readable, reviewable, and usable by application experts and developers� Flexible notations (graphical, tabular, symbolic) tied to the best way to provide theparticular type of information� Readability given priority over writability� User needs given priority over personal preferences� Information exposureFigure 3: Design criteria for the language4.1 Design Criteria for the Speci�cation LanguageWe identi�ed several criteria that were important with respect to our goals and that webelieve apply in general to this type of speci�cation language (see Figure 3).The �rst criterion, as described in the previous section, is that the language specifyblackbox behavior of the software only and not include internal design information. Be-cause of the safety and other types of formal analysis we planned to perform on the model,it also had to be based on a state machine as the underlying model; this is obviously nota requirement for all languages.Two other criteria are minimality and simplicity. Minimality implies that the speci�ca-tion should contain only the information needed by the developers and analysts. Otherwise,time is wasted in specifying things that are not used. Many of the popular real-time re-quirements speci�cation languages include facilities that are not strictly necessary. Theproblem with the \kitchen sink" approach is that the speci�cation language becomes un-necessarily complex and the speci�cation process becomes unnecessarily tedious and time-consuming. Also, for readability, information that is of limited help at a particular pointin the speci�cation should be omitted; the speci�cation should help the reader focus onwhat is important.To enhance simplicity, we tried to avoid speci�cation language features that complicatedthe analysis and the speci�cation. Language features that are semantically simple andstraightforward to de�ne are usually also easy to use and result in more readable andreviewable speci�cations.Related to the minimality and simplicity criteria are coherency, consistency, and con-ciseness. Other speci�cation languages for reactive systems, e.g., Statemate [HLN+90],Hatley/Pirbhai [HP87], and Ward/Mellor [WM85], include a variety of diverse models,11

www.manaraa.com

some of which are not formally de�ned. Our goal was to specify all the required informa-tion using one formally-de�ned modeling language based on one underlying state-machinemodel. We also wanted our language to represent information as economically as possiblewhile still maintaining readability.Because of our goal to provide a safety analysis of the speci�cation, the language mustbe unambiguous and the underlying model must have a mathematical foundation. At thesame time, the requirements speci�cation must be readable, reviewable, and usable. Insome respects, these criteria may be con
icting but it is possible to satisfy both if there isa separation between the actual speci�cation language and the underlying formal model.The speci�cation must be unambiguous and translatable into mathematical notation, but itneed not itself include arcane mathematical symbols that are unfamiliar to the applicationexperts and software developers. We spent considerable time and energy developing anotation that was readable yet maintained the underlying formal state-machine model.This notation has graphical, symbolic, and tabular aspects depending on which was bestfor specifying a particular type of information [FG79]. Because readability and writabilityare often con
icting goals, we chose readability in cases where a con
ict existed: The addedinvestment in constructing the requirements speci�cation pays o� in terms of discoveringmore requirements-level errors.The speci�cation language was developed while specifying TCAS for the FAA, andwe therefore received continual feedback by airframe manufacturers, component subcon-tractors, FAA certi�cation experts, airline representatives, and pilot group representativesduring development. This feedback provided invaluable information about the practicality,feasibility, and usability of the modeling language during its development. It helped usboth with determining what did and did not need to be in the language and with satisfyingour language design criteria.One of the advantages of the feedback was to help us overcome our individual pref-erences. When devising the speci�cation language, we usually had ourselves in mind asthe user. However, our familiarity with certain notations, especially mathematical nota-tions such as predicate calculus, hid their weaknesses. Our �rst attempts at devising ourlanguage, therefore, were failures: the notation was clear to us but not to others. Thefeedback from a diverse group of users helped us to evaluate the evolving speci�cationlanguage more objectively.A �nal criterion for our speci�cation became obvious only after trying to specify acomplex system. We �rst used unrestricted hierarchical abstraction in our model, thinkingthis would aid in understanding the speci�cation. We found that the use of what Harel[Har87] calls \clustering" (grouping states into superstates) indeed made the speci�cationmore readable. On the other hand, the use of what Harel calls \abstraction," a type ofinformation hiding that allows showing only the superstate (as an empty state) and hid thecomponent substates, often had an undesirable e�ect on readability. One of the purposesof such abstraction is that lower-level information, i.e., substates and transitions, can be12

www.manaraa.com

hidden from the reader and in that way the system is presented in digestible chunks.Our �rst modeling attempts maximized this type of hierarchical abstraction, thinkingthis would aid our goals of readability and understandability. Negative results were imme-diately apparent. Predicates (or guarding conditions) for transitions that \crossed" levelsbecame very di�cult to understand because they referred to nonvisible states. Context,which is vitally important to understandability, was lost. Thus, the information hiding con-cept that has contributed so much to the design, development, and maintenance of large,complex systems, proved detrimental to the understanding of such systems|a key elementin requirements speci�cation. For requirements speci�cation, the reader (and speci�er)needs as much context and speci�c detail as possible. We call this criterion \informationexposure."For the most part, our �nal TCAS speci�cation has only two levels of abstraction|a top level to provide an overall global view and one lower level to model each majorcomponent in the controlled system. In a few places, a third level became necessary toaid understanding and ensure that each subcomponent model �t on one page. For TCASII, this was all that was necessary, and we believe this to be true for most process controlsystems. The use of parallel state machines reduces the state explosion problem in state-machine models and each component of the process control loop usually has a limitednumber of relevant states and transitions.4.2 Speci�cation Language DescriptionPreviously, we de�ned a formal state machine model called RSM (Requirements StateMachine) for modeling the blackbox behavior of process-control systems along with for-mal criteria and heuristics to check the model for completeness, robustness, and safety[JLHM91]. RSM, while appropriate for formal analysis, has few of the desirable character-istics of a speci�cation language. So we needed a usable speci�cation language to put ontop of the underlying RSM model.Because our original goal was not to design a new speci�cation language, we evalu-ated our criteria against existing languages, decided that Statecharts came the closest, andstarted specifying TCAS II using it. However, we soon realized that reviewers had di�-culty understanding some aspects of pure Statecharts speci�cations and that some thingswe needed to specify were not easily described using it. Our speci�cation language evolvedas we got feedback on our drafts until it no longer is reasonable to refer to the languageas Statecharts. We call our current formulation RSML (Requirements State Machine Lan-guage). This section describes the syntax and semantics of RSML and how it di�ers fromStatecharts.A basic state machine is composed of states connected by transitions (see Figure 4).Default or start states are signi�ed by states whose connecting transition has no source.In the example, state A is the start state. Transitions de�ne how to get from one state13

www.manaraa.com

DC

BAFigure 4: A Basic State Machineto another. In the example, states B and C are directly reachable from A. State D isnot directly reachable from A (no transitions connect the two states); however, state D isreachable from A via state C.Statecharts are �nite state machines augmented with hierarchy, parallelism, and mod-ularity. An introduction to basic statechart notation can be found in [Har87]. RSMLborrows the notions of superstates, AND decomposition, broadcast communication, state-chart arrays, and conditional connectives from Statecharts. Other features of Statecharts,e.g., history and event selector connectives, were left out either because they were un-necessary or the semantics were too complicated to allow for formal analysis. We thenadded some features, such as interface descriptions and directed communication betweenstate machines, and changed the syntactic notation to make it easier for our reviewers toread and review the speci�cation. The syntactic extensions were found to be necessary tomodel a realistic problem rather than the small examples often found in research papers.We also changed somewhat the semantic de�nition of a \step," i.e., the semantics of statetransitions. The rest of this section �rst describes the features in common with Statechartsand then our changes and extensions.4.3 Features in common with StatechartsSuperstates. In Statecharts (and RSML), states may be grouped into superstates (seeFigure 5). Such groupings reduce the number of transitions by allowing transitions to andfrom the superstate rather than requiring explicit transitions to and from all of the groupedstates (substates). There are two ways to enter a superstate. First, the transition to thesuperstate may end at the superstate's border (transition A in Figure 5). In this case, adefault state must be speci�ed within the superstate. In the example, state S is enteredupon taking transition A. Alternatively, the transition may be made to a particular stateinside the superstate (transition B in Figure 5). Note that the same superstate may havetransitions ending at the border and at any number of the inner states. The superstate14

www.manaraa.com

D

C

B

A

S

RFigure 5: A superstate example.may be exited in two ways (transitions C and D in Figure 5). Analogous to transitionsinto the superstate, transitions out of the superstate may originate from the border or froman inner state. The same superstate may contain both types of exiting transitions.AND Decomposition. One of the most important innovations in Statecharts is whatHarel calls the parallel state3 which contains two or more state machines, separated bydashed borders (Figure 6). When the parallel state S is entered, each of the state machinesA;B;C; and D within it is entered. All state machines are exited when any transition istaken out of the parallel state. The use of parallel states greatly reduces the size of thespeci�cation. For example, we estimate that the TCAS system (i.e., the underlying RSMmodel) contains at least 1040 states whereas the graphical state diagram in our RSMLspeci�cation of TCAS has approximately 100 states and �ts on �ve pages. Although thesyntax of parallel states is the same in both Statecharts and RSML, the semantic de�nitionis di�erent, as described in the Step Semantics section below.Arrays. Both Statecharts and RSML allow the use of state-machine arrays (see Figure7). State machine arrays are semantically equivalent to identical parallel state machinesuniquely identi�ed by an index. Each of the array elements is entered or exited when thearray is entered or exited. Individual array elements are referenced by the array name andan index value. For example, Other-Aircraft[3] refers to the third array element in theexample. We found that de�ning a special token `this' that references the element valuefrom within that element is useful for passing the identity of the element to a function,e.g., Tra�c-Score(this).Connectives. Conditional connectives are used when transitions out of a particular stateinto two or more di�erent states are taken based on the same event but guarded by di�erent3Parallel states are also known as \orthogonal products", \product states", and \AND states".15

www.manaraa.com

S

D

C

B

A

Figure 6: The parallel state
Other-Aircraft, i:[1..30]

Figure 7: A State Machine Array16

www.manaraa.com

(a) State machine without
a conditional connective

(b) Same state machine using
a conditional connective

(c) Conditional connective used
to select default state

A B

C

D

A B

C
C

D

A B

C
C

D

ee (X)

e (Y)
e (Z)

(X)

(Y) (Z)

(X)

(Y) (Z)

eFigure 8: In the diagrams, \e" is the triggering event and \X", \Y", and \Z" are theguarding conditions.conditions (Figure 8 (a)). The transition from the source state to the connective is takenat the occurrence of the event. The appropriate destination state is determined basedon guarding conditions that are de�ned on the transitions from the connective to thedestination states (Figure 8 (b)). Some guarding conditions may be placed on the transitionfrom source state to connective if all the destination states share those conditions. Fora complete speci�cation, the guarding conditions from the connective to the destinationstates must be mutually exclusive and must form a tautology [JLHM91]. Sometimes a statechange is not desired. For these cases, a transition leads from the conditional connectiveback to the source state, thus explicitly specifying the circumstances for changing stateand for remaining in a state.A transition must begin and end in a state; therefore, the actual state transition isthe transition from the source state to the connective combined with the transition fromthe connective to the destination state. Conditional connectives often appear as default\states" (Figure 8 (c)) in RSML, even though they are not states. The actual default stateis chosen based on the conditions on the transitions out of the conditional connective.4.4 Changes to StatechartsBoth syntactic and semantic changes and additions were made to these basic features ofStatecharts. 17

www.manaraa.com

Directed Communication. RSML includes the ability to model the behavior of allcontrol loop components (not just the controller) and the communication between them.Physically distinct components are modeled as separate (communicating) state machines.Broadcast communication, as de�ned in Statecharts, is an inappropriate abstraction forcommunication between physically distinct components (e.g., two aircraft). Intercompo-nent communication in RSML is modeled as directed messages sent and received overunidirectional channels between component state machines. The limits of internal broad-cast communication are denoted by thick borders around a component state machine (seeFigure 9); internally broadcast events within a component state machine cannot cross thickborders.Events. RSML includes two types of events|internal and external. Internal events arecommunicated within a single component state machine using the Statechart broadcastmechanism, i.e., they cannot cross the thick borders around the component state machines.Thus, TCAS does not necessarily know about any events in the altimeter or in otheraircraft unless an external message has been sent between these two components. Internalevents are used only for one very speci�c purpose: RSML speci�cations are pure blackboxspeci�cations of the mathematical (input/output) function to be computed by the software;internal events are used to order the evaluation of that function. Basically they serve thesame purpose as parentheses in algebraic equations.External events, on the other hand, represent real communication (message passing)between TCAS and the other components (sensors, actuators, etc) of the system. Theyare required only because we include in our model the external interface to the system (inthis case, TCAS) and the assumed behavior of the other components of the process controlloop (the altimeters, other aircraft, pilots, etc.). The language does not prohibit the use ofexternal events as triggering events on transitions; however, in the TCAS II speci�cation,external event triggers are restricted to system component interface de�nitions.Interface De�nitions. The interface description is an important part of any require-ments speci�cation language. RSML includes an interface description for each separatelymodeled system component, which describes all external communication for that com-ponent. Our underlying model is communicating state machines: SEND events in onecomponent trigger RECEIVE events in another component. Each communication speci�esits source and destination. Unlike CSP [Hoa78] and some communicating state machinemodels, e.g., [Sha92], RSML does not require synchronous intercomponent communication.The receipt of a message by a component state machine is signalled by the occurrence ofan external RECEIVE event. These events may trigger state changes within the receivingcomponent, i.e., values are assigned to input variables based on information communicatedin the message. Because the state diagrams representing such state transitions are trivial18

www.manaraa.com

and provide no useful information, only the transition descriptions are included in theRSML speci�cation. The interface description includes the source and destination of themessage, the triggering RECEIVE event and guarding condition, the mapping of message�eld names and values to variable names and values, and any internally generated eventsresulting from the receipt of the message. Note again that interface descriptions describetransitions within the receiving component state machine. Thus, guarding conditions willnever block receipt of a message but may prevent the assignment of message �eld valuesto input variables.Output variable value assignments and the sending of messages to other control-loopcomponents are triggered by the occurrence of internal events. Each output interface de-scription (representing a transition within the sending component state machine) containsthe message source and destination, the internal triggering event and guarding condition,the mapping of output variable names and values to message �eld names and values, andthe internally generated external SEND event.Component State Machines. Each state machine is RSML may be divided into threeparts separated by double solid lines (see Figure 9). The middle part contains the graphicalstate machine. The top and bottom parts contain input and output variables, respectively.All RSML inputs are blackbox inputs while outputs are calculated (derived) blackboxoutputs.De�nitions must be provided for all input and output variables. Each de�nition con-tains:� Location (the associated RSML state machine, e.g. Own-Aircraft).� Source or Destination (external component, e.g. altimeter).� Type (e.g., integer).� Expected Range (e.g., -10,000 ... 10,000).� Granularity (e.g., 10).� Units (e.g., feet).� Load (e.g., one per second).� Exception Handling Information (e.g., out of range values are treated as zero).� Traceability information (e.g., MOPS Reference).In addition to the above items, output variable descriptions also contain triggeringevents and value assignments.Transition De�nitions. Transition de�nitions in RSML contain �ve parts: (1) theidenti�cation, (2) the location, (3) the triggering event, (4) the guarding condition, and (5)the output action. The identi�cation, location, and triggering event are the only requiredparts. Figure 10 shows the form of a transition de�nition in RSML.19

www.manaraa.com

Input-Variable : Type
Input-Variable : Type
Input-Variable : Type

Input:

Output:
Output-Variable : Type
Output-Variable : Type
Output-Variable : Type

C

Component-Name

Figure 9: State Machine with Associated Variables
20

www.manaraa.com

Each transition is identi�ed by its source and destination states (State-S �! State-D).Transitions split by a conditional connective are de�ned in two parts. The �rst part of thede�nition is identi�ed by the connective destination, while the second part is identi�ed bythe connective source, (State �! c
 or c
 �! State). If several transitions have thesame de�nition (i.e., the same location, trigger, condition, and output action), then theymay be de�ned together. Sometimes a single transition de�nition applies to all transitionsinto a particular state. The special symbol ANYmay be used as a shorthand for all sourcestates.For example, the following transition identi�cationTransition(s): North �! EastSouth �! EastWest �! Eastmight be rewritten using:Transition(s): ANY �! EastThe location �eld of the transition de�nition shows where in the state machine thetransition may be found. The location is given as a hierarchical path, using the \."symbol to separate the RSML state labels. For example, a transition at the locationLocation: Other Aircraft . Tracked . Intruder Statuss-52has its source and destination states in Intruder Status (found on page 52) which is con-tained in the hierarchy formed by Other Aircraft and Tracked. The location in the examplecan be traced in Figures 25, 28, and 29.Transitions are taken upon the occurrence of the trigger event, provided that the guard-ing condition is true. Internally generated events may be either internal or external events,i.e. they are either broadcast within the component state machine or are explicitly sent toanother component.The condition de�nes what must be true before the transition can be taken and isspeci�ed using AND/OR tables, described below.Output actions identify events that are generated when the transition is taken.The rest of the transition de�nition is for explanation and documentation only. Thedescription includes any English language description of the transition de�nition that maybe appropriate to include and the MOPS Ref. is a reference to the pseudocode (designspeci�cation) that implements this transition. The latter provides traceability and wasused in the independent veri�cation performed on our TCAS speci�cation. An optionalComments section can be used to provide extra explanatory information. For example, wesometimes used it to explain why a particular decision was made.21

www.manaraa.com

Transition(s): (Source state) �! (Destination State)Location: (path to the transition being considered.)Trigger Event: (The event that causes this transition to be taken.)Condition: (Optional guarding condition on the transition.)Output Action: (Optional output action.)Description: (Optional English description of the transition information)MOPS Ref. (Used for tracing requirements to software design)Comments: (Optional comments.)Figure 10: Transition de�nition.AND/OR Tables. Our �rst attempt to write the conditions for the state transitionsused pure predicate calculus (Figure 11), as this was what we had seen in previous state-chart examples [BGFG86, Har87] and it was natural to us. Our external reviewers, however,did not �nd it natural or reviewable and told to us to come up with something else. Infact, we found that we had di�culty in writing and reading complex predicate calculus ex-pressions ourselves even though we were familiar and comfortable with the notation; whiledeveloping another notation, we found logical errors in our �rst attempt at specifying apart of TCAS that were not at all obvious in the original form.Our second attempt replaced logical phrases with English phrases and a list of English-to-logic mappings. Although this is super�cially more readable, we found that annotatingthe logic with English did not provide an appreciable advantage in terms of the underlyingcomplexity of the logical expressions.The notation we �nally chose is a tabular representation of disjunctive normal form(DNF) that we call AND/OR tables.AND ORExpression-1 T TExpression-2 F �Expression-3 � TThe far-left column of the AND/OR table lists the logical phrases; each of the othercolumns is a conjunction of those phrases and contains the logical values of the expressions.22

www.manaraa.com

True-Tau-Cappedf-362 � Time-To-CPA ^(Other-Capabilityv-212 6= TCAS-TA/RA _(Other-VRCv-209 = No-Intent ^ Two-Of-Threem-327)) ^((Down-Separationf-337(low-�rm) � Alt-Threshold ^Up-Separationf-362(low-�rm) � Alt-Threshold) _(Current-Vertical-Separationf-332 > 150 ft ^((Inhibit-Biased-Climbf-339(low-�rm) > Down-Separationf-337(low-�rm) ^Own-Tracked-Altf-349 < Other-Tracked-Altf-344) _(Inhibit-Biased-Climbf-339(low-�rm) � Down-Separationf-337(low-�rm) ^Own-Tracked-Altf-349 > Other-Tracked-Altf-344))))Figure 11: Transition Condition written in Predicate calculus
AND OROther-Capabilityv-212 = TCAS-TA/RA � � � F F FOther-VRCv-209 = No-Intent T T T � � �Two-Of-Threem-327 T T T � � �True-Tau-Cappedf-362 < Time-To-CPA F F F F F FDown-Separationf-337(low-�rm) � Alt-Threshold T � � T � �Up-Separationf-362(low-�rm) � Alt-Threshold T � � T � �Inhibit-Biased-Climbf-339(low-�rm) > Down-Separationf-337(low-�rm) � T F � T FOwn-Tracked-Altf-349 < Other-Tracked-Altf-344 � T � � T �Own-Tracked-Altf-349 > Other-Tracked-Altf-344 � � T � � TCurrent-Vertical-Separationf-332 > 150 ft � T T � T TFigure 12: The AND/OR table23

www.manaraa.com

If one of the columns is true, then the table evaluates to true. A column evaluates to true ifall of its elements are true. To make all these relationships clearer, we physically separatedthe columns, the far-left column a little more than the others. The AND/OR tables do noteliminate the need for existential and universal quanti�ers; however, their scope is limitedto a disjunct term or to the entire table, making it much easier to parse the expressions.We also discovered that omissions became apparent when application experts were forcedto consider the explicit \don't cares" (�) that appeared in the tables.The above table is equivalent to((Expression-1 ^ : Expression-2) _ (Expression-1 ^ Expression-3))The AND/OR table for the predicate calculus expression in Figure 11 is shown in Figure12. Some evidence of the readability and reviewability of the AND/OR tables is that errorswe made in our �rst representation of the system were quickly discovered by the applica-tion experts after only a very minimal (ten minute) tutorial on our notation. Below theAND/OR tables, we later added an English language description of the guarding conditionson each transition.Macros and Functions. As we wrote the TCAS requirements, we discovered that someof the AND/OR tables became very complicated. Also, some of the logic is repeated inseveral tables. We solved both problems by using macros, which are just labeled AND/ORtables. These macros, for the most part, correspond to typical abstractions used by theapplication experts in describing the TCAS requirements and therefore add to the under-standability of the speci�cation. We did, however, try to use them sparingly in order notto provide too many levels of indirection in the speci�cation. To increase
exibility, macrosmay be parameterized. Also, rather than including complex mathematical functions di-rectly in the transition tables, such functions are speci�ed separately and referenced in thetables.Transition Buses. One of the advantages of Statecharts over other state machine modelsis the ability to reduce a large number of states to a conceptually manageable number byusing superstates and parallel states (AND-decomposition). We kept both of these features,but we found it helpful to introduce more constructs to reduce clutter. For example,many parts of the TCAS model are fully- or almost fully-interconnected, i.e., there is atransition from each state to nearly every other one. Showing each transition explicitly isconfusing and can make the graphical diagram unreadable (see Figure 13A); the transitionbus (Figure 13B) provides the same information. A transition must be de�ned for eachsource-state/destination-state pair on the transition bus, where a source state is a statewith a transition to the bus and a destination state is a state with a transition from thebus. 24

www.manaraa.com

A

B

C

D

A B

C D

BA

Figure 13:Cross Referencing and Identi�er Types. Another problem arose with writing transi-tion information on the arrows between states. This is �ne for relatively simple transitionsand relatively simple statecharts. Even marking the arrows with a short tag that identi-�es the transition logic elsewhere was found to complicate the graphics and make it moredi�cult to comprehend when the statechart was complex. Such tags are symbolic \noise";the information is not salient, even when using supposedly mnemonic tags, and the result-ing clutter is more harmful than helpful. Unless the complete transition condition can bewritten on the arrow between states (not possible for anything but the trivial examplesfound in textbooks), such transition tags provide no useful information to the user exceptto match the arrow with a separate speci�cation of the condition elsewhere in the docu-ment. The use of a special tag for this purpose merely increases the number of names andsynonyms that the user must remember.We opted instead, at �rst, to put page references on the arrow indicating where thetransition logic could be found in the document (since this was really the information thatthe user needed); later we moved this information under each diagram in order to reduceclutter and make the diagrams more readable. This had no e�ect on the ease with whichthe page number information could be obtained. Paging through the document whenreading transition de�nitions in order to view the corresponding statechart was minimizedby including fold-out pages of the graphical part of the statecharts visible from anywherein the document.Cross referencing was used liberally elsewhere in the language as well. No matter howconcise the notational style, requirements speci�cations for large systems span many pages(and sometimes volumes) and usually contain references to other parts of the speci�cation.We wanted to reduce redundancy while still making easily accessible all information that isneeded to understand or review each part of the document. Liberal use of page referencesas subscripts on names de�ned elsewhere was a practical compromise.25

www.manaraa.com

Another problem is how to identify the types of identi�ers that are used in the speci�ca-tion. Solutions that have been used in the past include surrounding the name with specialsymbols as in the A-7 speci�cation [Hen80] or using special fonts. Both of these solutionshave drawbacks in terms of readability and learnability. The RSML approach is to usesubscripts. Each identi�er in the speci�cation is subscripted with a single letter denotingits type|v for variable, s for state, m for macro, f for function, and e for event|anda page number where that element is de�ned. Page numbers are updated automaticallywhen changes are made to the speci�cation. For example, altitudev�176 is a variable whosetype de�nition can be found on page 176. An alphabetized index also is included thatshows all the pages on which the name is used in the document and denotes the page onwhich the name is originally de�ned.Identity Transitions. Identity transitions originate and terminate in the same state andgenerate output actions without causing a state change. The need for identity transitionsarises when output actions are necessary for synchronization although no state change isrequired; the underlying Mealy machine model allows associating output actions only withtransitions and not with states. All identity transitions are guarded by the negation ofthe disjunction of all the conditions guarding transitions that are triggered by the sametrigger event and that originate in the same state. Identity transitions are not included inthe state-machine graphical diagram in order to reduce clutter since they are not neededfor reviewing the speci�cation but for analysis and completeness reasons. Instead, they aregrouped in tables.Timing. During the speci�cation of TCAS, we needed only three temporal functions:the value of a variable at some previous point in time, the truth value of a condition atsome point in the past, and an implicitly generated event based on time (i.e., a timeoutrelative to state entry). Rather than treating timeouts specially and de�ning triggeringevents for them, all timing functions are written as expressions in guarding conditions.An example of such an expression is t � (t(entered(Threat)) + 5.0 secs) . This expressionstates that the current time (`t' without an argument) is greater than or equal to the timethat state Threat was entered plus 5.0 seconds. Such expressions evaluate to true or falseand generally appear as logical phrases in AND/OR tables.TCAS is required to operate based on a cycle, called a surveillance cycle, started byan event (Surv-Comp-Event) and all temporal requirements are based on this cycle. Inthe TCAS requirements document the function Prevj(x) has been overloaded to apply toboth variable values, functions, and predicates:� Prevj(v) refers to the value of variable (or function) v at j surveillance cycles backin time. 26

www.manaraa.com

� Prevj(p) refers to the truth value of p at j surveillance cycles back in time.Step Semantics. The semantics of Statecharts have been described in detail in severalpapers [HP85, Har87]. Unfortunately the descriptions are not consistent with each other;small (but signi�cant) di�erences exist. The following comparison between Statecharts andRSML semantics is based on the formal description by Pnueli and Shalev [PS89].The semantic description of Statecharts in [PS89] is based on the notion of steps. Astep is initiated when an external event arrives at the model boundary, causing a cascade ofsubsequent internal events. A step is completed when no more internal events are generatedor there are no more transitions triggered by the events that were generated, i.e., the modelhas stabilized in a state. It is assumed that a step is completed before another externalevent arrives, i.e., there is no delay in the response to an external stimulus (this assumptionis called the synchrony hypothesis). The main di�erence between Statecharts and RSMLis in the way a step is constructed.In both Statecharts and RSML, a step starts when a set of external events (I) arrivesat the model boundary. The set of transitions that are triggered by the events in I aredenoted by triggered(I). If a transition is taken, a new event may be generated. The setof events generated when the transitions in a set of transitions T are taken is de�ned bygenerated(T). The state (or con�guration) of the model is denoted by C, e.g., the initialcon�guration in Figure 16 is the set fA;Cg. Transitions whose source states are membersof a particular con�guration C are said to be relevant to C.In the set of transitions denoted by relevant(C), a (possibly empty) subset are triggeredby the events in I, i.e., the transitions that could possibly be taken given a con�gurationC and a set of events I are de�ned byrelevant(C)\ triggered(I):In this set, only a few transitions are compatible, i.e., can be taken together. For example,the transition labeled a in Figure 14 is not consistent with the transition labeled b sinceonly one of them can be taken. Let the set consistent(T) contain all transitions that arecompatible with the transitions in the set T .The construction of a step in Statecharts is based on an enabling function En thatdetermines which transitions can be taken given a set of external events (I) and a con�g-uration C. In the Statecharts step creation, a transition relevant to C and triggered by anevent in I is initially picked and added to the set T . T is then expanded by adding tran-sitions that are relevant to C, consistent with the transitions already in T , and triggeredby either an event in I or an event generated by a transition in T . For example, considerthe model in Figure 16. When the external event x arrives and the model is in the initialcon�guration fA;Cg, t1 and t4 are the only two transitions that can be taken. Assume t1is picked and added to T . Since t1 generates the event y, the new set of possible transitions27

www.manaraa.com

a

bFigure 14: Transitions a and b are inconsistentProcedure Step-Construction(Var C : con�guration, I : setofevents) ;beginT := ; ;while T � En(T, C, I) donondeterministically pick a transition t 2 (En(T, C, I) � T) and add it to T ;C := NextCon�g(C,T) ; f Calculate the new con�guration gend Figure 15: Step construction in Statechartsis expanded to include t3. Both t4 and t3 are consistent with t1, so either one can be pickedand added to T .In general, the set of transitions that can be added to T can be de�ned with an enablingfunction: En(T;C; I) = relevant(C)\consistent(T)\triggered(I [generated(T)):The construction of a Statechart step is de�ned by the operational de�nition in Figure 15.The function NextConfig calculates the new state con�guration given the old statecon�guration C and the set of transitions T . The possible constructions of a step in Fig-ure 16 are summarized in Table 1. The con�guration at the beginning of the step is de�nedby the set fA;Cg, assuming that I = fxg. Note here that due to the nondeterministicnature of the step construction (i.e., the selection of the transition to put in T is made non-deterministically), there are (in this case) three di�erent ways of constructing a step; twoconstructions yielding di�erent results are illustrated in the table. The behavior de�ned inconstruction 1 in Table 1 is counterintuitive since transition t4, which should \obviously"be triggered by the input event x, is not taken.The semantics of RSML is slightly di�erent and enforces a more rigorous causal orderingof the transitions taken within a step. The enabling function in the RSML step construction28

www.manaraa.com

A

B

C

D

Et2 : x/y

t6 : y/z

t3 : y/z

t1 : x/y t4 : x/z t5 : x/zFigure 16: A Statechart and RSML exampleConstruction 1loop # T En(T) generated(T) C0 ; ft1; t4g ; fA;Cg1 ft1g ft1; t3; t4g fyg fA;Cg2 ft1; t3g ft1; t3g fy; zg fA;CgCompletion of Step fB;EgConstruction 2loop # T En(T) generated(T) C0 ; ft1; t4g ; fA;Cg1 ft4g ft1; t4g fzg fA;Cg2 ft1; t4g ft1; t4g fy; zg fA;CgCompletion of Step fB;DgTable 1: Two possible step constructions in Statecharts29

www.manaraa.com

Procedure Step-Construction-RSML(Var C : con�guration, Var I : setofevents) ;beginrepeatT := ; ;while T � En(T, C, I) donondeterministically pick a transition t 2 (En(T, C, I) � T) and add it to T ;C := NextCon�g(C,T) ; f Calculate the new con�guration gI := generated(T) ; f Calculate the internal events generated by the transitionsin T and use them to continue the construction of the step guntil T = ; ;end Figure 17: Step construction in RSMLdoes not consider the transitions triggered by the output events of the transitions in T tobe enabled, i.e., En(T;C; I) = relevant(C)\consistent(T)\triggered(I):The step construction in RSML can now be described by the algorithm in Figure 17.This de�nition forces an RSML state machine to take �rst all transitions triggeredby the external event starting the step and then the transitions triggered by the eventsgenerated as a result of that �rst micro-step. The process is repeated until there are nomore transitions triggered by the events generated by the preceding micro-step. Table 2shows the construction of a step according to the semantics of RSML.This approach has one disadvantage compared to the Statecharts step construction. Itcan easily be seen that the Statecharts step construction will always terminate since En(T)is a �nite set. The step construction in RSML state machines can potentially be in�nite asis shown in Figure 18 and Table 3. The events in Figure 18 will get alternately generatedforever.The advantage of the RSML approach is that it is more consistent with our intuitivenotion of a step. In the example shown in Figure 16, the Statecharts step semantics allowstransition t3 to be taken, even though event y is generated after x. A reviewer could bemisled by such a speci�cation, not realizing that the speci�cation is inconsistent with whatis intended. We felt that reviewability, in this case, was more important than the abilityto force termination. 30

www.manaraa.com

outer loop # inner loop # T En(T) I C1 0 ; ft1; t4g fxg fA;Cg1 1 ft1g ft1; t4g fxg fA;Cg1 2 ft1; t4g ft1; t4g fxg fA;Cg1 Exit ft1; t4g ft6g fy; zg fB;Dg2 0 ; ft6g fy; zg fB;Dg2 1 ft6g ft6g fy; zg fB;Dg2 Exit ft6g ; fzg fB;Cg3 0 ; ; fzg fB;CgExit | ; ; fzg fB;CgTable 2: The step construction in RSML
A

B

C

D

t2 : x/y t3 : y/x t4 : y/xt1 : x/yFigure 18: An RSML state machine that will not terminateouter loop # inner loop # T T' En(T) I C1 0 ; ; ft1g fxg fA;Cg1 1 ft1g ; ft1g fxg fA;Cg1 Exit ft1g ft1g ft1g fyg fB;Cg2 0 ; ft1g ft3g fyg fB;Cg2 1 ft3g ft1g ft3g fyg fB;Cg2 Exit ft3g ft3g ft3g fxg fB;Dg3 0 ; ft3g ft2g fxg fB;Dg...Table 3: An example of a RSML state machine leading to an in�nite step construction.31

www.manaraa.com

5 The System Requirements Speci�cationThe RSML language was developed using TCAS II as a testbed. The resulting speci�cationnot only acts as an example of a blackbox process-control system requirements speci�cation,but also as an example of a real-life, successful application of formal methods to a complexsystem. We caution the reader, however, that compromises in the speci�c model created forTCAS II were required due to real-life constraints explained further in Section 6 (Evaluationand Future Goals).Figure 19 shows the contents of the TCAS speci�cation4 (all �gures in this section arelocated at the end of the paper). There are similarities in content with the A-7 requirementsdocument [Hen80], but we include behavioral descriptions of the other components in theprocess control loop as well as system goals and constraints. Physical requirements for theTCAS box (e.g., size, weight and materials) and some I/O devices (e.g., TCAS antennas)are contained in the MOPS and should be in our document, but currently are not (simplydue to a lack of resources to retype them). The A-7 speci�cation includes sections onpossible subsets of the program and the characteristics of the computer, which we donot include. Both speci�cations include requirements for timing, accuracy, and responseto undesired events, but we do not separate them from the functional behavior; insteadthey are included where the functional behavior is speci�ed. Ja�e [Jaf88] has argued thatfunctional and timing information is too inextricably connected to be usefully separated.The goals and constraints in the �rst section of the document are written in English.In general, they would be the �rst thing speci�ed when developing the system, althoughthey may be modi�ed as the system engineering process progresses.Normally, the next step in system engineering involves identifying and designing (if nec-essary) the components of the control loop. In the case of TCAS, most of the componentsalready exist. Early in the system design process, a detailed description of the allocationof high-level functional requirements to each physical component along with the interfacesbetween them is generated.The environment section of the speci�cation includes a high-level system componentand communication diagram (see Figure 20). Note that this diagram is a directed graphand not a state machine diagram. The TCAS system consists of various sensors (e.g., radioaltimeter and Mode-S transponder) and actuators (e.g., a pilot display and transmitters)aboard the aircraft. Some of these communicate with other aircraft (which have varyingcollision avoidance capabilities) and ground radar stations.The black-box behavior of each control loop component (except TCAS) and the relevantbehavior of each process component is modeled in the environment section. The RSMLspeci�cations of the physical components other than TCAS itself re
ect the assumptions4The entire TCAS speci�cation is complete at this time except for Section 3.1. Only a few of theenvironment components have been speci�ed so far due to FAA pressures to deliver the TCAS speci�cation�rst. Section 3.1 is primarily required only for the safety analysis.32

www.manaraa.com

that the designers of TCAS can make about the components' behavior including theirfailure behavior. Including these assumptions in the speci�cation is useful in designingthe controller software to be robust against the e�ects of design changes to the othercomponents and against failures in the environment.As an example, Figure 21 shows the RSML state machine description of the radioaltimeter. This device provides CAS with own (the host) aircraft's altitude above theground. An accompanying status message indicates, to some extent, the reliability ofthe altitude data based on an altimeter self-test mechanism. Under normal operatingconditions, the radio altitude is correct (within a certain tolerance) and the status indicates\okay." In one possible failure mode, the radio altitude is correct, but the status indicatesa failure. In a second failure mode, the radio altimeter produces no output, neither altitudedata nor status information. Finally, in the third failure mode, the radio altitude sent isincorrect, but the status indicates \okay." In this mode, the altimeter may send all zeroes,repeatedly send the maximum, repeatedly send the same value, or send random values.The environment section also includes the description of the communication interfacebetween the components of the control loop. This includes CAS inputs and outputs al-though other communication (such as between other aircraft) would be included if it wererelevant to the operation of TCAS. Figures 22 and 23 show examples of an input interfaceand output interface speci�cation, respectively. Figure 24 shows an example of a messageformal speci�cation.TCAS has three logical subcomponents (see Figure 20): the collision avoidance sub-system (CAS) that contains the actual collision-avoidance logic, a surveillance subsystemthat handles communication with other aircraft and the ground radar stations, and a per-formance monitor. All three could have been speci�ed together as one logical component,but for historical and political reasons we were required to specify the behavior of eachseparately. The three models are therefore speci�ed as separate components with de�nedexternal interfaces. CAS is by far the most complex of the three and is used here as theexample. The following overview of the CAS speci�cation guides the reader through exam-ples of the various parts of the speci�cation although the description is greatly simpli�edin order to make it understandable to those unfamiliar with collision avoidance systems.The highest level CAS state machine is shown in Figure 25. At this level, CAS iseither on or o�; if it is on, it may be either fully operational or in standby mode. Asexplained previously, the control function is speci�ed only in terms of the state of thecontrolled process and the states of relevant control loop components. In the case of theCAS logic, the states of three types of process components are modeled: our own aircraft,other aircraft, and mode-S ground radar stations. Each of the three subcomponents ofCAS is elaborated in more detailed RSML models.Figure 26 shows the expanded Own-Aircraft portion of the CAS model. The top portionof the diagram lists variables that represent inputs to CAS from the TCAS sensors thatare associated with the state of Own-Aircraft. The bottom portion of the diagram lists33

www.manaraa.com

variables that represent outputs from CAS to TCAS actuators. The middle portion of thediagram represents the parts of the derived Own-Aircraft state necessary for the evaluationof the CAS control function.E�ective-SL (sensitivity level) controls the dimensions of the protected airspace aroundown aircraft. It is used to control the trade-o� between necessary protection and unnec-essary pilot advisories. Higher sensitivity levels increase protection, but also increase theincidence of unnecessary alerts.There are two primary means that CAS uses to determine E�ective-SL: ground-basedselection and pilot selection. Ground-based selection of sensitivity level is not envisionedfor use in the U.S. airspace at this time; however, the capability for such selection hasbeen included in the CAS logic. The pilot, on the other hand, can select three modes ofoperation (STANDBY, TA-ONLY, and TA/RA) which are converted to sensitivity level bythe logic. In STANDBY mode, neither tra�c advisories (TA's) nor resolution advisories(RA's) are output by CAS. The pilot normally selects STANDBY when on the ground. InTA-ONLY mode, only tra�c advisories are output by CAS. This mode is often selectedby the pilot to avoid unnecessary distractions while at low altitudes on �nal approach toan airport. When the pilot selects TA/RA mode (also called AUTOMATIC), CAS selectssensitivity level based on the current altitude of own aircraft (Auto-SL state).Alt-Layer e�ectively divides vertical airspace into layers (e.g., Layer-3 is approximatelyequal to the range 20,000 feet to 30,000 feet). State changes are made using a hysteresis:the criteria for transitioning into the Layer-2 state is di�erent depending on whether thecurrent state is Layer-1 (own aircraft is climbing) or Layer-3 (own aircraft is descending).Alt-Layer and E�ective-SL are used in the determination of individual other aircraft threatclassi�cation (see Figure 29).Due to aircraft climb performance limitations at high altitude or in the landing con�g-uration, the CAS logic may inhibit a climb maneuver. Descend maneuvers are inhibitedif own aircraft is too close to the ground to safely command the pilot to descend. Theincrease inhibits (Increase-Climb-Inhibit and Increase-Descend-Inhibit) prohibit the com-mand of higher rate maneuvers (e.g. 2500 fpm vs. 1500 fpm), and therefore use morestringent altitude thresholds. The Advisory-Status part of the Own-Aircraft model (Fig-ure 27) shows the CAS resolution advisory (RA), if there is one, that is currently displayedto the pilot.Figure 28 shows the expanded Other-Aircraft portion of the CAS model. Again, thetop portion of the diagram lists variables that represent inputs to CAS from the TCASsensors, and the bottom portion of the diagram lists variables that represent outputsfrom CAS to TCAS actuators. The middle portion of the diagram contains parallel statemachines representing the derived Other-Aircraft state necessary for the evaluation of theCAS control function.RM-Send-Status synchronizes coordination interrogations with other TCAS-equippedaircraft, where \RM" stands for Resolution Message. Coordination interrogations contain34

www.manaraa.com

information about an aircraft's intended vertical maneuver or \intent" with respect to athreat. This information is expressed in the form of a complement; e.g., if own aircraft hasselected a climb maneuver against the threat (see Figure 29), it will transmit a message inits coordination interrogation restricting the threat aircraft to descend maneuvers againstown aircraft.CAS can track up to 30 aircraft simultaneously (it can track more but is limited bythe number of con
icting
ight scenarios it can resolve simultaneously). The Track-Statusstate re
ects whether a particular Other-Aircraft is currently being tracked or not. Figure29 shows the expanded Tracked portion of the Other-Aircraft RSML model.The Intruder-Status state within Tracked re
ects the current classi�cation of Other-Aircraft (Other-Tra�c, Proximate-Tra�c, Potential-Threat, and Threat). Intruder-Statusis determined using (among other criteria) Own-Aircraft E�ective-SL and Alt-Layer. Whenan intruder is classi�ed as a threat, a two-step process is used to select a ResolutionAdvisory (RA). The �rst step is to select a sense (Climb or Descend). Based on the rangeand altitude tracks of the intruder, the CAS logic models the intruder's path until ClosestPoint of Approach (CPA). The CAS logic computes the predicted vertical separation forboth climb and descend maneuvers, and selects the sense that provides the greater verticalseparation.The second step in selecting an RA is to select the strength of the advisory. Theleast disruptive vertical rate maneuver that will still achieve safe separation is selected.Possible advisory strengths are Nominal-1500fpm (1500 feet per minute), VSL-2000, 1000,500, and 0-fpm (vertical speed limits of 2000, 1000, 500 and 0 feet per minute; 0-fpmmeans level
ight). Advisory strength is continuously evaluated and modi�ed, if necessary,during the course of the encounter. After CAS has chosen an RA, occasionally the threataircraft maneuvers vertically in a manner that thwarts the RA. In this case, CAS mayincrease the strength of the advisory from 1,500 feet per minute to 2,500 feet per minute(Increase-2500fpm) or it may reverse sense (from Climb to Descend or vice versa).The Mode-S-Ground Station model is quite simple and, therefore, is not shown here.Although theoretically the CAS logic uses input from the ground stations, these are notoperational at this time.The speci�cation must include a description of each input and output variable. Exam-ples are shown in Figures 30 and 31.As an example of a transition de�nition, Figure 32 contains the de�nition of the tran-sition from the state Threat to the state Other-Tra�c, substates of Intruder-Status. Inorder for an intruder to be classi�ed as a Threat, it must be reporting its altitude, itmust be airborne, and it must satisfy the threat altitude and threat range tests. Onceclassi�ed as a Threat, it may not be downgraded (to Potential-Threat, Proximate-Tra�c,or Other-Tra�c) based on the threat altitude test. It may be downgraded based on thethreat range test, but only if it fails on two consecutive attempts|represented by a sep-arate transition. However, if the intruder stops reporting altitude, or if it reports that it35

www.manaraa.com

is on the ground, it can no longer be classi�ed as a threat. The �rst and last rows of theAND/OR table represent this criteria. Note that this transition represents a downgradedirectly to Other-Tra�c, bypassing the intermediate classi�cations of Potential-Threat andProximate-Tra�c. This happens when the intruder is no longer airborne (column 4) orwhen altitude reporting is lost and either the bearing or range inputs are invalid (columns1 and 2). Column 3 represents a situation in which a partial downgrade to Potential-Threat or Proximate-Tra�c might have been possible, i.e., altitude reporting is lost, butboth the range and bearing inputs are valid. If either the Potential-Threat-Conditionor the Proximate-Tra�c-Condition were satis�ed, the intruder classi�cation would havebeen downgraded to Potential-Threat or Proximate-Tra�c, respectively. However, in thistransition, neither criteria are satis�ed, so the classi�cation is downgraded all the way toOther-Tra�c.As an example of a macro, Figure 33 contains the Potential-Threat-Condition macroreferenced in the above transition. In order for an intruder to be classi�ed as a Potential-Threat, it must satisfy the Potential-Threat-Range-Test. In addition, if it is reportingaltitude and is airborne, it must satisfy the Potential-Threat-Altitude-Test. If it is notreporting altitude, own aircraft must be below 15,500 feet.Functions and macros are used in a similar way, but functions return values. Figure 34contains an example of an RSML function, Vertical-Resolution-Complement. This functionis related to the coordination interrogations described earlier (Other-Aircraft . RM-Send-Status). If CAS has selected a climb maneuver against this particular intruder (Other-Aircraft in state Climb), the Vertical Resolution Complement (VRC) is Don't Climb. Avalue of 2 will be assigned to the VRC �eld of the Mode S message.The appendices to the document contain additional information to make the speci�-cation more readable or changeable. The �rst appendix de�nes constants. Everywhere aconstant is used in the document, a label is attached as a subscript, e.g., 300ft:(MINSEP)associates the constant 300 feet with a label that designates this is the minimum verticalseparation allowed between aircraft. A change of the value of this constant (e.g., the FAAdecides in the future that minimum vertical separation should be 350 feet) can be auto-matically and easily made throughout the document. An alternative (and more common)solution to the maintenance and change problem for constants would be to use the labelalone throughout the document and put the values associated with the labels into a table.However, the latter solution makes the document much less readable and requires constant
ipping to the constant de�nition section to determine the actual numbers associated withthe labels.The second appendix, Table De�nitions, is used for constants that are more naturallystored in a tabular form, e.g., potential-threat minimum-range threshold indexed by ourown aircraft sensitivity level.We found that a list of events associated with the state transition that generates themand the state transitions that are triggered by them was helpful in producing the document36

www.manaraa.com

and included this list in a third appendix.The Glossary contains de�nitions of technical terms and abbreviations used throughoutthe document, and the Notation Appendix provides a tutorial on the RSML language.The Reference Algorithms appendix contains tracking and other algorithms that are notrequired but are used to de�ne criteria for accuracy of the actual algorithms selected. Forexample, a tracker chosen by the designer might be required to have at least the accuracyof the alpha-beta tracker speci�ed in the appendix.Finally, an index to the document is provided that includes an entry for every nameused in the document giving the pages on which it is used and the page where it is de�ned.Currently, there are over 500 entries in the index.6 Evaluation and Future GoalsThis paper has de�ned (1) an approach to specifying system requirements for real-time,reactive systems, (2) the criteria that should be used in designing a language for suchrequirements, (3) a language demonstrating the approach and criteria, and (4) the neces-sary and desirable contents and organization of a system requirements speci�cation usingthis approach. These were developed while writing a system requirements speci�cation foran aircraft collision avoidance system, which provided continual evaluation and feedbackduring development and demonstrated the practicality of writing a formal requirementsspeci�cation for a complex process-control system.Because the speci�cation (which was originally intended merely to be experimental) wasadopted by the FAA during the development of RSML, deadlines required us to deliverparts of the speci�cation while the notation was still evolving. There are some aspectsof this type of a speci�cation that still cause di�culties in understanding such as theoverall event sequencing and synchronization. During the independent veri�cation andvalidation of our TCAS speci�cation, we needed to derive addition diagrams and tables sothat the reviewers could easily check the consistency of our speci�cation with the previous,pseudocode version. Although parallel state machines and other features of the languagedid reduce the speci�cation of states enough to make such state-machine speci�cationspractical, the proliferation of events causes problems that need to be handled.Reviews of our document for correctness by users during development made clear thatspeci�cations should include graphical, symbolic, tabular and textual notation, dependingon the type of information being conveyed. For example, the graphical state machineswere a great help during reviews for �nding certain types of errors as were the tables for�nding other errors. Even though the state transition information had to be removed fromthe graphical state diagrams and put into tables, the graphical representation providedimportant information to reviewers of the document that would have been very di�cultor impossible to derive from the transition tables alone. A language that contains only37

www.manaraa.com

graphics or only tables or only symbolic strings is probably less useful than one in whichdi�erent notational techniques are used to communicate di�erent types of information.More research is needed to determine the most appropriate notations for each type ofinformation that needs to be conveyed.One result of this e�ort was a demonstration that formal speci�cations can be appliedto complex, reactive systems and that such speci�cations can be readable and reviewableby application experts with a minimal knowledge of mathematics and computer science.A lesson to be learned from the experience is that formal speci�cations can be usable iftheir design takes into consideration the training and backgrounds of those who are to readand review the speci�cation. Some engineers working with us on the TCAS speci�cationreported that they liked the AND/OR table description of the transition conditions becauseit resembles the logic tables that they are used to using and that the state machines andlogic tables �t the way they think about systems.Although formal speci�cation languages obviously have to be de�ned in an unambigu-ous and mathematical way, the syntax itself does not have to contain obscure mathematicalsymbols that are familiar and comfortable to neither the application expert nor the im-plementor of the system. There must simply be an unambiguous translation from thespeci�cation language (in our case RSML) to the formal model (RSM for our language)underlying it. Currently, formal speci�cation languages are designed primarily by math-ematicians who use a notation with which they are comfortable, but which is foreign tothose who must use the language. One solution is to train hardware and software engineersto think like mathematicians while our alternative solution is to provide languages thatallow the user to think about the system in the way that they have been trained in theirdiscipline. We hypothesize that providing a model of a system that is closer to the mentalmodel that the reviewer and implementor have of the system and closer to the way theyhave thought about such systems in the past will aid in �nding errors in the speci�cationitself and reduce the numbers of errors that are introduced in implementing the speci�ca-tion. This hypothesis, of course, still needs to be experimentally validated, although ourexperience provides some anecdotal support.Because the speci�cation of the CAS logic, from which we built the CAS part of ourTCAS model, was low-level pseudocode, the exercise had many features of reverse engi-neering. The pseudocode used is a low-level language containing only:� simple data types (bits, bit strings, character strings, integers, pointers, and
oatingpoint variables),� arithmetic expressions,� the structured control statements if-then-else, if-elseif-otherwise, repeat-while, repeat-until, and loop-exitif-loop, and38

www.manaraa.com

� subroutines (without local variables).All variables are global: There are no local variables but there is provision for passingparameter names to subroutines to show which variables are used by the subroutine (fewsubroutines actually use this feature in the TCAS speci�cation). The only complex datastructure allowed is a \group" that provides for grouping related variables into a \datastructure," i.e., giving them a group name.In many ways, the TCAS reverse engineering was even more di�cult than the usualreverse engineering exercise since the language was so low-level and di�cult to read. Thisspeci�cation has acted as the requirements speci�cation for TCAS from 1983 to 1992and was continually changed as errors were found and changes made to the requirements.Several lessons can be learned from our experience that are applicable to both forward andreverse engineering e�orts in general.First, we had di�culty abstracting away from the design. Even when we did not look atthe pseudocode, we found it di�cult in the beginning to eliminate functional decompositionand
owchart-like logic, i.e., to specify the problemwithout trying to solve it. With practicewe became better at omitting design information, but the struggle never entirely abated.The very low level of the pseudocode also made the process of abstraction more di�cultas many purely implementation features, such as
ags, had to be used extensively inthe pseudocode. After the speci�cation of the CAS logic was completed, an independentveri�cation and validation was performed to compare the pseudocode speci�cation and theRSML speci�cation. The veri�ers experienced the same problems that we did, and a largenumber of identi�ed discrepancies resulted in no change to the RSML speci�cation becausethey merely represented design peculiarities of the pseudocode and not requirements.Second, although it may be a function of the particular system we were reverse en-gineering, we found it impossible to derive the requirements speci�cation strictly fromthe pseudocode and an accompanying English language description. Although the basicinformation was all there, the intent was missing. Therefore, distinguishing between re-quirements and artifacts of the implementation was not possible in all cases. As has beendiscovered by most people attempting to maintain such systems, an audit trail of decisionsand the reasons why decisions were made is absolutely essential. This was not done forTCAS over the 15 years of its development and those responsible for the system todayare currently attempting to reconstruct decision-making information from old memos andcorporate memory.Third, the �nal requirements speci�cation model would have been di�erent and muchsimpler if we had been starting from scratch. Because the TCAS pseudocode speci�ca-tion had evolved over a period of more than 15 years, the current version contains morecomplexity than is necessary. What was originally a simple conceptual model degraded aschanges were made to the pseudocode that simpli�ed the process of making the change orminimized the amount of code that needed to be changed, but complicated or degraded the39

www.manaraa.com

original conceptual model. As Parnas said in [Par79]: \The problem is that the subsetsand extensions are not the programs that we would have designed if we had set out todesign just that product." This is a common maintenance dilemma, and TCAS was noexception. When changes are made to design or code without backing up all the way torequirements, such problems arise and increase as time passes. For TCAS, the highest-levelspeci�cation was the pseudocode.The problem of increasing complexity and lack of conceptual coherency in the under-lying model were exacerbated as more and more changes were made over the years andmore errors introduced due to the increasing di�culty in determining the consequences ofthe changes. What we did for the TCAS system was to make the current underlying con-ceptual model explicit. Because of the necessity of building a requirements speci�cationthat matches the TCAS systems actually in use (which were certi�ed against the pseu-docode speci�cation), our resulting model is more complicated than necessary, includesmore than the minimum required behavior, and is harder to understand than is strictlynecessary. This was frustrating as we �rst built a nice, simple model and found that wehad to complicate it for no better reason than that it had to match some errors or poordecisions in the pseudocode. Once our speci�cation is complete, future versions of thesystem will hopefully return to a simpler model. We believe that if a blackbox behavioralmodel of our type had been built originally, not only would the �nal speci�cation be simplerand more understandable, but making changes without introducing errors or unnecessarilycomplicating the resulting requirements also would have been simpli�ed.Now that the speci�cation is complete, our work on validating the feasibility and prac-ticality of formal analysis procedures on such speci�cations has begun. Heimdahl [Hei94]has (1) implemented a simulator for RSML so speci�cations can be executed, (2) formallyde�ned the semantics of RSML using composable functions, (3) devised algorithms toperform semantic analysis on the underlying RSM formal model to ensure completenessand consistency in requirements [JLHM91], and (4) experimentally validated the analysisalgorithms on the TCAS II speci�cation.We are currently working on analysis procedures (1) to analyze the entire system modelfor safety [LS87], and (2) to perform standard system engineering risk analyses such as faulttree analysis [Mel91] directly from the system requirements speci�cation. Attempts havealso begun to derive test data satisfying various coverage criteria automatically from thespeci�cation [WGS94].AcknowledgmentsImportant contributions to this e�ort were made by Ruben Ortega and Rueven Greenberg,both of whom were graduate students at UCI. We would also like to acknowledge thehelp of Mike DeWalt, Jim Treacy, Larry Nivert, and Tom Choyce of the FAA and the40

www.manaraa.com

members of the RTCAWorking Group on TCAS Requirements, especially Kathryn Ybarraof Honeywell, David Lubkowski and Uma Satyen of MITRE, Gus Kyriakos of Bendix, AmyJohnson and Jose Perez of Rockwell Collins, Ann Drumm of Lincoln Labs, and CaptainRoss Beins (United Airlines) of the TCAS Pilots Working Group.

41

www.manaraa.com

1 Introduction 12 Goals and Constraints 112.1 High Level Goals : 112.2 High Level Constraints : 163 Environment 233.1 Components : 253.2 Input Interfaces : 583.3 Output Interfaces : 663.4 Message Formats : 714 TCAS Physical Requirements 855 Surveillance Requirements 976 CAS Requirements 1255.1 Own Aircraft: 1305.1.1 Own Aircraft Inputs : 1325.1.2 Own Aircraft Outputs : : : : : : : : : : : : : : : : : : : 1475.1.3 Own Aircraft Transitions : : : : : : : : : : : : : : : : 1565.2 Other Aircraft : 2005.2.1 Other Aircraft Inputs: 2075.2.2 Other Aircraft Outputs : : : : : : : : : : : : : : : : : : 2235.2.3 Other Aircraft Transitions : : : : : : : : : : : : : : : 2305.3 Ground Station : 2935.3.1 Ground Station Inputs : : : : : : : : : : : : : : : : : : 2945.3.2 Ground Station Outputs : : : : : : : : : : : : : : : : : 2945.3.3 Ground Station Transitions : : : : : : : : : : : : : : 2955.4 CAS Macros : 2965.5 CAS Functions : 3307 Performance Monitor Requirements 365A Constant De�nitions 367B Table De�nitions 371C Event De�nitions 379D Glossary 383E Notation 391F Reference Algorithms 403G Index 410Figure 19: The table of contents42

www.manaraa.com

TCAS

Performance Monitor

Surveillance

CAS

Pressure
Altimeter

Mode Selector

Radio
Altimeter

A/C Discretes

Display-Unit

Mode-S TransponderTransmitterReceiverReceiverReceiver

Intruder

Own-Aircraft

Ground-Station

Air Data Comp.

Figure 20: Component Communication43

www.manaraa.com

Failed-Self-Test

Not-Sending-Output

Sending-Zeroes

Sending-Max-Value

Stuck-On-Single-Value

Sending-Random-Values

Operating-Normally

Malfunctioning-Undetected

Radio Altimeter

Figure 21: Altimeter component
44

www.manaraa.com

Interface:Source: Mode-S-TransponderDestination: CASTrigger Event: Receive(Sensitivity-Level-Command(IIS, SLC))Condition: AND OR2 � SLC � 7 T �SLC = 15 � TAssignment(s):Mode-S-Ground-Station[IIS] . Ground-Commanded-SLv-294 = (Cancel if SLC = 15SLC if 2 � SLC � 7Output Action: NoneDescription:If a sensitivity level command is received from own transponder, then setGround-Commanded-SL of the appropriate ground station parallel state.MOPS Ref.: SL command processing (p. 3-P21)Figure 22: An example of an input interface de�nition
45

www.manaraa.com

Interface:Source: CASDestination: Mode-S-TransponderTrigger Event: Received-Intruder-Intent-Evente-381Condition: trueAssignment(s):VRC = Encode-RACf-336(Vertical-RACv-154,Horizontal-RACv-255)ARA = Encode-ARAf-335(Climb-RAv-151,Descend-RAv-152)Output Action: Send(Coordination-Update(VRC, ARA))Description: This sends a coordination update message to own transponder.MOPS Ref.: RESOLUTION MESSAGE PROCESSING (p. 3-P11).Comments: ARINC 735 speci�es the format of the coordination update message. It containsadditional �elds, such as sensitivity level, that are not speci�ed in the pseudocode.Figure 23: An example of an output interface de�nition
46

www.manaraa.com

Name: Mode S All-Call Reply (squitter)Message Format: DF-11 (All-Call Reply)MOPS Reference: Detection 2.2.8.2.1Source: Mode S equipped aircraft.Destination: Broadcast.Timetype: S-R or Periodic (as squitters at maximum period of 1.2s)Data Representation:DFDownlinkFormat1 5 CA=0TransponderCapability6 8 AAAddressAnnounced9 32 PIParity/-Identity33 56Contained Sub�elds:Field DescriptionDF De�nes the type of transmission. DF transmissions are replies.11 = All-Call ReplyCA Reports the capability of the transponder.The codes are:0 = No extended capability report available.1 = Comm A/B and extended capability report available.2 = Comm A/B/C and extended capability report available.3 = Comm A/B/C/D and extended capability report available.4-7 = Not assignedAA Contains aircraft address in the clear.PI Ref.B 4.1.Comments:Generated as a reply to ground sensor all-call interrogation or as squitters.Figure 24: Message format de�nition47

www.manaraa.com

C
Fully-Operational

Own-Aircraft

Other-Aircraft, i:[1..30]

Mode-S-Ground-Station, i:[1..15]

Standby

Power-Off

Power-On

Inputs:

TCAS-Operational-Status : {Operational, Not-Operational }

CAS

Figure 25: Collision Avoidance System
48

www.manaraa.com

Altitude-Climb-Inhib-Active : {True, False}
Config-Climb-Inhibit : {True,False}

Increase-Climb-Inhibit-Discrete : {True,False}

Own-Alt-Rate : Integer

Alt-Layer

Increase-Climb-Inhibit

Climb-Inhibit

Descend-RA : Enumerated
Climb-RA : Enumerated

Combined-Control-Out : Enumerated

Aircraft-Altitude-Limit : IntegerStandby-Discrete-Input : {True, False}

Advisory-Status (expanded in section)

1

2

4

5

6

7

3

Effective-SL

Own-Aircraft

Radio-Altimeter-Status : {Valid, Not-Valid}

Barometric-Altimeter-Status : {Fine, Coarse}
Own-Mode-S-Address : Integer
Own-Air-Status : {Airborne, On-Ground}

Traffic-Display-Permitted : {True,False}

Own-Alt-Barometric : Integer

Own-Alt-Radio : Integer

Mode-Selector : {TA/RA, Standby, TA-Only, 3, 4, 5, 6, 7}
Prox-Traffic-Display : {True,False}

Input:

2

4

5

6

7

Auto-SL

1 Layer-1

Layer-2

Layer-3

Layer-4

Increase-Descend-Inhibit

Descend-Inhibit

Inhibited

Not-Inhibited

Not-Inhibited

Inhibited

Not-Inhibited

Inhibited

C

Not-Inhibited

Inhibited

Vertical-Control-Out : Enumerated

Sound-Aural-Alarm : {True,False}

Output:

Aural-Alarm-Inhibit : {True,False}
Own-Goal-Alt-Rate : Integer
Vertcal-RAC : Enumerated
Horizontal-RAC : EnumeratedFigure 26: Own-Aircraft49

www.manaraa.com

Altitude-Lost

Track-Dropped

Clear-of-Conflict

Vertical-Control

Increase

Other

Crossing

Maintain

Reversal

C

VSL2000

VSL1000

VSL500

VSL0

Climb-VSL

No-Climb-VSL

C

Yes

No

Yes

No

RA

Advisory-Status

No-RA

Composite-RA

No-Descend-VSL

Descend-VSL

Negative

VSL0

VSL500

VSL1000

VSL2000

Descend

Climb

Positive

Combined-Control

Corrective-Climb

Preventive

No-Advisory

Corrective-Descend

Corrective-Climb

Corrective-Descend

Figure 27: Advisory status50

www.manaraa.com

Output:

Advisory-Code : {Other,PA,TA,RA}

Display-Arrow-Out : {Up,Down}
Other-Relative-Alt-Out : Integer
Other-Range-Out : Integer
Other-Bearing-Out : Integer
Other-Bearing-OK-Out : {True,False}
Other-Alt-Reporting-Out : {True,False}

Threat-Not-Tracked

Not-Tracked

Tracked

(Expanded next page.)

Not-Attempting-RM

Waiting-For-Reply

Waiting-To-Coordinate

Input:

Other-Aircraft [i]

Other-Alt : Integer
Other-Mode-S-Address : Integer

Other-Capability : {Non-TCAS,TCAS-TA,TCAS-TA/RA}
Other-Sensitivity-Level : {Not-Known, 1, 2, 3, 4, 5, 6, 7}

Other-Transponder-Equippage : {ATCRBS,Mode-S}
Other-Alt-Reporting : {True,False}
Surveillance-ID : Integer
Other-Range : Integer
Range-Report-Time-Stamp : Time
Other-Range-Valid : {True,False}
Other-Alt-Valid : {True,False}
Other-Bearing : Integer
Other-Bearing-Valid : {True,False}
TA-In-Sens-Level-2 : {True,False}
Other-VRC : { None, Dont-Descend, Dont-Climb }
Other-HRC : { None, Dont-Turn-Left, Dont-Turn-Right }

Track-Status RM-Send-Status

Figure 28: Other Aircraft Overview51

www.manaraa.com

C

New Established

Other-TrafficProximate-TrafficPotential-Threat

PT-Timer

PT-Condition-Passed

CCrossing

Non-Crossing Own-CrossInt-Cross

Failed

Passed

Range-Test

Not-Waiting-To-Send

Waiting-To-Send Individual-Evaluated

Individual-Not-Evaluated

Display-Arrow No-Arrow

Up

Down

Traffic-Display-Status Threat-Sync

On-Ground Airborne

Other-Air-Status

1 2 30

Level-Wait
No

CLost
Yes

Climb

TA/RA-

C

Sense

Advisory

Delay
RA

VSL-2000fpm

C

VSL-1000fpm

VSL-500fpm

Positive

Descend

Nominal-1500fpm

Increase-2500fpm

VSL-0fpm

Negative Negative

VSL-0fpm

Increase-2500fpm

Nominal-1500fpm

Positive

VSL-500fpm

VSL-1000fpm

C

VSL-2000fpm

Not-Selected Not-Selected
Strength-Strength-

Threat

Reversal

Reversed

Not-Reversed

Status

Altitude-Reporting

Intruder-Status

Tracked

Figure 29: Tracked52

www.manaraa.com

Input: Other-Mode-S-AddressLocation: Other-Aircrafts-202Source: SurveillanceType: IntegerExpected Range: 1 ... (224 � 2)Granularity: 1 (unit)Units: N/ALoad: N/AException handling information: Mode-S addresses outside the valid range (i.e., all0s or all 1s) are presently ignored. It is assumed that no such addresses will occurbecause administrative procedures will preclude this event. Duplicate addresses aretreated similarly.MOPS Reference: IDINTRDescription: The unique address of the Other-Aircraft.Comments: This �eld has no meaning for non-Mode-S-equipped aircraft. No decisionhas been made about what to do about addresses that are outside the valid range orduplicate addresses due to failures of administrative procedures.Figure 30: Input variable de�nition53

www.manaraa.com

Output: Display-Arrow-OutLocation: Other-Aircrafts-202Destination: Display-UnitType: EnumeratedExpected Range: fNo-Arrow, Up, DowngGranularity: N/ATrigger: Display-Arrow-Evaluated-Evente-381Value: Value ConditionNo-Arrow Display-Arrow in state No-ArrowUp Display-Arrow in state UpDown Display-Arrow in state DownUnits: N/ALoad: 1/s for CAS.MOPS Reference: ARROWDescription: From ATA-STD-TCAS II/1A 4.2.1.10: \A vertical arrow shall be placedto the immediate right of the tra�c symbol if the vertical speed of the intruder is equalto or greater than 500 fpm with the arrow pointing up for climbing tra�c and down fordescending tra�c."Comments: Figure 31: Output variable de�nition54

www.manaraa.com

Transition(s): Threat �! Other-Tra�cLocation: Other-Aircraft . Tracked . Intruder-Statuss-237Trigger Event: Air-Status-Evaluated-Evente-379Condition: AND ORAlt-Reportings-202 in state Lost T T T �Bearing-Validm-298 F � T �Other-Range-Validv-218 = True � F T �Proximate-Tra�c-Conditionm-317 � � F �Potential-Threat-Conditionm-314 � � F �Other-Air-Statuss-202 in state On-Ground � � � TOutput Action: Intruder-Status-Evaluated-Evente-379Description:Columns 1-2 Lost altitude reporting and either the bearing or range inputs are invalid.Column 3 Lost altitude reporting and both range and bearing are valid, but neither the proxi-mate nor potential threat classi�cation criteria are satis�ed.Column 4 Aircraft is on ground.MOPS Ref. Section 7.1. TRAFFIC ADVISORY.Figure 32: Transition de�nition55

www.manaraa.com

Macro: Potential-Threat-ConditionDe�nition: AND OROther-Air-Statuss-202 in state Airborne � TPotential-Threat-Range-Testm-315 T TOther-Alt-Reportingv-214 = True F TOwn-Tracked-Altf-349 � 15500 ft(ABOVNMC) F �Potential-Threat-Alt-Testm-313 � TDescription: To be considered a Potential-Threat, the intruder must satisfy thepotential threat range criteria. If the intruder is altitude reporting, it must also satisfythe potential threat altitude criteria. If the intruder is not altitude reporting, then it isconsidered a potential threat only if own altitude is below 15500 ft(ABOVNMC).MOPS Ref. TRAFFIC ADVISORY.Tra�c advisory detection, Range hit processing.Figure 33: Macro de�nition
56

www.manaraa.com

Function: Vertical-Resolution-Complement(i)Return type: f 0, 1, 2 gDe�nition:Vertical-Resolution-Complement =8><>: 0 if Other-Aircrafts-202[i] not in state Threat1 if Other-Aircrafts-202[i] in state Threat . Descend2 if Other-Aircrafts-202[i] in state Threat . ClimbDescription: This function returns the value of the Vertical-Resolution-ComplementMode S message �eld. Its values have the following meaning:Value Meaning0 No vertical resolution advisory complement sent.1 Don't descend.2 Don't climb.Explanation of value selection criteria: If Other-Aircraft is not in state Threat, thenVertical-Resolution-Complement has value 0 (no vertical RA complement). If TCAS hasselected a Descend sense RA against the intruder, then Vertical-Resolution-Complementis set to 1 (don't descend). Likewise, if TCAS has selected a Climb sense RA against theintruder, then Vertical-Resolution-Complement is set to 2 (don't climb).MOPS Ref.: Send initial intent (p. 6-P57).Figure 34: Function de�nition57

www.manaraa.com

References[BGFG86] G. R. Bruns, S. L. Gerhart, I. Forman, and M. Graf. Design technology assess-ment: The statecharts approach. Technical Report STP-107-86, MCC, March1986.[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of�nite-state concurrent systems using temporal logic. ACM Transactions onProgramming Languages and Systems, 8(2):244{263, April 1986.[FBWJ92] S. Faulk, J. Brackett, P. Ward, and J. Kirby Jr. The core method for real-timerequirements. IEEE Software, 9(5), September 1992.[FG79] M. Fitter and T. R. G. Green. When do diagrams make good computer lan-guages. International Journal on Man-Machine Studies, 11, 1979.[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science ofComputer Programming, 8:231{274, 1987.[Hei94] Mats P.E. Heimdahl. Static Analysis of State-Based Requirements: Analysisfor Completeness and Consistency. PhD thesis, University of California, Irvine,1994.[Hen80] K. L. Heninger. Specifying software for complex systems: New techniquesand their application. IEEE Transactions on Software Engineering, 6(1):2{13,January 1980.[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working environment for thedevelopment of complex reactive systems. IEEE Transactions on Software En-gineering, 16(4), April 1990.[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications of theACM, 21(8):666{677, 1978.[Hol91] G. J. Holzmann. Design and validation of computer protocols. Prentice Hall,1991.[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In K.R. Apt,editor, Logics and Models of Concurrent Systems, pages 477{498. Springer-Verlag, 1985.[HP87] D. Hatley and I. Pirbhai. Strategies for Real Time System Speci�cation. DorsetHouse Publishing, 1987. 58

www.manaraa.com

[Jaf88] M.S. Ja�e. Completeness, Robustness, and Safety in Real-Time Software Re-quirements and Speci�cations. PhD thesis, University of California, Irvine,1988.[JLHM91] M. S. Ja�e, N. G. Leveson, M. P.E. Heimdahl, and B. Melhart. Softwarerequirements analysis for real-time process-control systems. IEEE Transactionson Software Engineering, 17(3):241{258, March 1991.[LCS91] N.G. Leveson, S.S. Cha, and T.J. Shimeall. Safety veri�cation of ada programsusing software fault trees. IEEE Software, July 1991.[LH83] N.G. Leveson and P.R. Harvey. Analyzing Software Safety. IEEE Transactionson Software Engineering, SE-9(5):569{579, September 1983.[LS87] N. G. Leveson and J. L. Stolzy. Safety analysis using Petri nets. IEEE Trans-actions on Software Engineering, 13(3):386{397, March 1987.[Mel91] B. E. Melhart. An external interaction model for specifying requirements ofembedded software. Technical Report Draft, Texas Christian University, Jan1991.[Par79] D.L. Parnas. Designing software for ease of extension and contraction. IEEETransactions on Software Engineering, SE-5(2):128{138, March 1979.[PS89] A. Pnueli and M. Shalev. What is in a step? In J. Klop, J. Meijer, and J. Rutten,editors, J.W. De Baker, Liber Amicorum, pages 373{400. CWI Amsterdam,1989.[PW89] D. L. Parnas and Y. Wang. The trace assertion method of module interfacespeci�cation. Technical Report 89-261, Queen's University, Kingston, OntarioK7L3N6, 1989.[RR91] A. P. Ravn and H. Richel. Requirements capture for embedded real-time sys-tems. In IMACS Symposium MCTS, 1991.[Sha92] A. C. Shaw. Communicating real-time state machines. IEEE Transactions onSoftware Engineering, 18(9), September 1992.[vS90] A. J. van Schouwen. The A-7 requirementsmodel: Re-examination for real-timesysems and an application to monitoring systems. Technical Report 90-276,Queen's University, Kingston, Ontario, May 1990.[WGS94] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test datafrom bolean speci�cation. IEEE Transactions on Software Engineering, 20(5),May 1994. 59

www.manaraa.com

[WM85] P. Ward and S. Mellor. Structured Development for Real-Time Systems. Your-don Press, 1985.

60

